查看原文
其他

3段极简代码带你入门Python科学计算库SciPy

赵志强 刘志伟 大数据DT 2021-10-18

导读:SciPy是基于NumPy的,提供了更多的科学计算功能,比如线性代数、优化、积分、插值、信号处理等。


作者:赵志强
来源:大数据DT(ID:hzdashuju)




01 文件读写

目前在国内Matlab仍然非常流行,Matlab使用的数据格式通常是.mat文件。对此,Scipy.io包提供了可以导入导出.mat文件的接口,这样,Python和Matlab的协同工作就变得非常容易了。示例代码如下所示:

from scipy import io as spio
import numpy as np
a=np.arange(10)
spio.savemat('a.mat',{'a':a})
data = spio.loadmat('a.mat', struct_as_record=True)
data['a']

Out:

array([[0123456789]])


02 线性代数运算

在SciPy中,线性代数运算使用的是scipy.linalg。

scipy.linalg.det()可用于计算矩阵的行列式,示例代码如下:

from scipy import linalg
m=np.array([[1,2],[3,4]])
linalg.det(m)

Out:

-2.0


03 优化和拟合

求解最大值最小值之类的问题即为优化问题,在SciPy中,scipy.optimization提供了最小值、曲线拟合等算法。示例代码如下:

import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt

def f(x):
    return x**2+20*np.sin(x)

x=np.arange(-10,10,0.1)

plt.plot(x,f(x))

由图3-1中可以看到,对应的最小值的横坐标大约是-2。

我们可以用暴力穷举法来计算最小值,代码如下:

grid=(-10,10,0.1)
x_min=optimize.brute(f,(grid,))
x_min
Out:
array([-1.42754883])

▲图3-1

当然,当数据量较大的时候,穷举法速度会很慢。为了提高效率,scipy.optimize也提供了诸如模拟退火等优化算法,这里不再多讲。

关于作者:赵志强,金融量化与建模专家,目前在金融科技公司负责金融大数据产品工作,专注于研究Al在金融领域的落地应用。曾在由诺奖得主Robert Engle领导的上海纽约大学波动研究所研究全球金融风险,并和上交所、中金所合作完成多项科研项目。曾在摩根士丹利华鑫基金、明汯投资负责量化投资研究工作,内容包括股票多因子、期货CTA和高频交易等。刘志伟,从事数据分析、数据挖掘等工作。对自然语言处理、文本分类、实体识别、关系抽取、传统机器学习,以及大数据技术栈均有实践经验。目前正在探索相关技术在金融场景内的落地应用,包括自动知识图谱、大规模文本信息抽取结构化、异常识别等领域,关注人工智能行业前沿技术发展。
本文摘编自《Python量化投资:技术、模型与策略》,经出版方授权发布。

延伸阅读《Python量化投资:技术、模型与策略》点击上图了解及购买
转载请联系微信:DoctorData
推荐语:理论与实践相结合,基于Python阐述量化投资理论和策略,深入分析Python在量化投资分析中具体的应用案例。



划重点👇


干货直达👇


更多精彩👇

在公众号对话框输入以下关键词
查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 讲明白 | 神操作大数据 | 云计算 | 数据库 | Python | 可视化AI | 人工智能 | 机器学习 | 深度学习 | NLP5G | 中台 | 用户画像 1024 | 数学 | 算法 数字孪生

据统计,99%的大咖都关注了这个公众号
👇
: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存